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ABSTRACT égél\¢{(>

A Boltzmann equation is derived from the N-particle
Schroedinger equation. The development is based on the solution
of the two particle quantum mechanical Liouville equation due to
Green. The various approximations invélved in the derivation are
discussed and the collision integral and corrections are compared
to their classical analogs. TFurther development of the collision
integral yields the standard result, the usual Boltzmann

collision integral in which the classical differential cross

section is replaced by its quantum mechanical counterpartLlfﬁjﬁ<{JDJ

+ Present Address: Department of Mathematical Physics,

University of Adelaide, Adelaide, South Australia.



The quantum mechanical analog of the classical Boltzmann
equation has been discussed by a number of authors,l’z’3’4’5
The concept of a phase space in quantum mechanics is somewhat
nebulous because of the Heisenberg uncertainty principle; but it
has been well established that the proper correspondent to the
classical distribution function is the Wigner distribution function.
In the classical limit (i.e.f)~€>0) this function obeys the
classical equation and, in general, it possesses some, but not
all, of the properties of a classical distribution (e.g. it is
always real but not necessarily non-negative). In the Wigner
representation both the position and momentum operators are simply
multiplicative operators and, as a consequence, expressions for
various statistical averages such as the stream velocity are of
precisely the same form in the quantum mechanical treatment as in
the classical treatment.

In this paper we derive an equation for the singlet distribution
function which is a quantum mechanical analog of the Boltzmann

equation. In the low density limit the equation is of the same form
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as the classical equation except that the classical differential
cross section is replaced by its quantum mechanical counterpart.
The density correction terms are shown to be analogous to the
correction terms to the classical equation due to Green.

1. The Quantum Mechanical Liouville and B.B.G.K.Y. Equations

The state of an ﬁ%-body quantum mechanical system is described
(N2
by its density matrix, fD . The time development of this function

is described by the Schroedinger equation
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where f/ is the N-particle Hamiltonian. The Wigner distribution

(2 ) V)
function, :F , is a Fourier transform of f? and is defined

by the relation
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The superscript N denotes a vector in the M-particle space.

By transforming the Schroedinger equation into the Wigner
representation one obtains a quantum mechanical analog of the
Liouville equation. However, we do not wish to deal directly with

this equation. Instead, following the procedure usual in the

6. H. S. Green, Molecular Theorv of Fluids, (North Holland
Publishing Co., Amsterdam, 1952).




classical problem, we define lower order distribution functionms,

Q)
7£ ? ; by the relations
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A hierarchy of equations known as the quantum mechanical B.B.G.K.Y.
equations governing the time evolution of the lower order distribution
functions is obtained by integrating the quantum mechanical Liouville
equation over the coordinates of some of the particles. If the
total potential energy of the system is taken to be the sum of
contributions associated with each pair of particles, the equation
for any one distribution function involves only the function of
next higher order. Hence, the whole hierarchy is interrelated
and an exact solution for any one function cannot be obtained
without, in effect, solving the original AN-body Liouville equation.
However, experience indicates that such detailed knowledge is not
necessary for the description of the observed macroscopic behavior
of the system. By making a suitable approximation, we terminate
the hierarchy to obtain a closed set of equations which describe
the phenomena of interest.,
W {2
The equations for 'F and '% which are obtained by

. . . . 7
integrating the quantum mechanical Liouville equation are
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where ;1 =1, is an integral operator defined by
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In the above equation the variable subscripts denote a particular

article. The quantit is the intermolecular potential and
P q y
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The quantity ;{ multiplying the integrals in Eqs. 4 and 5 is an
ordering parameter which is later set equal to one. The terms
multiplied by ;\ represent the effect of collisions between the
set of molecules described by the distribution function on the

left and the rest of the molecules. When ;{=(9 the equations




become quantum mechanical Liouville equations. We proceed by
‘ ~(2) 7[1

finding an approximate expression for as a functional of
)

and use this result in Eq. 4 to obtain a closed equation for +~.

If we expand the exponential
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which appears in the operator ln its power series we find

the first non-zero contribution to the expansion arises from the term
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This term gives rise to the classical operator
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Higher terms in the expansion give rise to correction terms to the
classical operator in powers of 7%

The operator Cj{)j)is zero for those values of the separation
distance /1£} for which the potential and all its derivatives are
effectively zero. This 1limits the integration over ./l, in Eq. 4 to
a sphere of a molecular diameter about JU,

2. Derivation of the Boltzmann Equation

2)
The equation for f¥ can be simplified by assuming that only

binary collisions are important. Since we are interested in a



2)
solution of the‘f( equation for small values of—/@ﬁ, the integral
on the right of Eq. 5 is negligible. That is, to develop the
(2
collision integral in Eq. 4 to order ;% , we need 7E to only
zero order in 4A . When this simplification is made we are left
with the two particle quantum mechanical Liouville equation. Green

O
has given a solution of this equation as a functional of 'f s
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and
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The wave function %@,%o)appearing in this expression is a solution

of the time independent Schroedinger equation
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with the boundary condition that it represents asymptotically an -
incident plane wave with momentum éép , and scattered waves.
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Green has shown that thi 3 ion for jp factors into a
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product of f?U) 's in the precollision region of the phase space.

This boundary condition corresponds to the “molecular chaos"

condition which is assumed in the classical treatment.
Irreversibility enters the theory at this point. It arises,

as .in the classical theory, because we discriminate between the

preccllision ( 4&3@ €0 and N large) and postcollision

(ﬁég& ') 0 and JU large) regions of the phase space by assuming

(2) 0
that ’F factors into a product of 'F s in the precollision
region. It can be shown that the solution given by Eq. 11 satisfies

this condition, by a generalization of the argument used in the



derivation of Eq. 62 . At very large separation distances, omne
can make use of the asymptotic form of 99 to show that in the
.. u (2) .
precollision region f? depends only con the incident portion of 99
A specialized form of this result is apparent in Eq. 61 . When the
exponential incident wave is used in Eq. 11 the integrations can
be performed in a straightforward manner to yield the desired result.
Since the classical and quantum mechanical two particle Liouville
equations are identical outside the range of the potential, it
(2)
follows that TF factors (as in the classical case) in the whole
precollision portion of the phase space. That is, a point in this
region of the phase space cannot describe in either the classical
or quantum mechanical case two particles which have collided.
()]
The {5 's in Eq. 11, which are evaluated at time 7§o , can
)]

be written in terms of +? ‘s at time T by mearns of Eq. 4. To

zero order in ;1 we obtain
7
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This result is consistent with the neglect of the three body
collision terms which has been discussed previously, When this

2)
product is substituted intc Eq. 11 the resulting expression for'%{

is independent of Co . This can be seen by expanding the spatial




"
dependence of the -F 's in a Taylor series about K and applying

—

the technique illustrated in Eq. 30 to the various powers of
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resulting from the expansion. An analogous property exists in the
classical case.

If we combine Egs. 4 and 5 and ignore three body terms, we have
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To zero order in ;% the operator in the integrand on the right

()
commutes with the product of f, 's and thus from Eqs.1l and 18

we write
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In obtaining this equation we have made use cf the identity
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Now the integrand of the integral over /la and 7é2 depends on
two spatial coordinates which can be taken to be a gross pesition
coordinate and a relative position coordinate. At equilibrium the
system is spatially homogeneous and the functions are independent
of the gross position coordinate. It is convenient to choose the
gross position coordinate to be /L, and the relative coordinate to

(n

be /U . 1If we expand the spatial dependence of the product of 'F 's

in Eq. 20 about 2}7 5 then the order of the gradient’ if%l indicates

the order of deviation from equilibrium. If we retain only terms

through first order in this expansion we have
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and
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In Eq. 26 we may make use of the fact that

-2 (82 )/ 4

3 — 28
3} dz. € i(a)
h
to carry out the integrations over /lo and 6 to obtain
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Thus q2 is independent of 76 , and the two terms in Eq. 22 which
0@’

contain 3 vanish. Upon comparing Eq. 29 with Eq. 2 we see that

GP / is the steady state Wigner distribution function for a beam of

particles with incident momenta 7éo being scattered from a scattering

/
center. In the next section we evaluate G? at large distances
from the scattering center.

The fifth term in the integrand of the integral in Eq. 22 can

be simplified by the following integrations:
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Thus this expression, like G} , 1s independent of the time

difference 'é‘fo ’
The final term in Eq. 22 can be simplified by noting that
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But the first term on the right in this expression vanishes because,

as we have just shown, the expression given by Eq. 30 is independent

of Tfo . Thus Eq. 22 can be written
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It is shown in the next section that the first term on the ;ight
side of this equation gives rise to the quantum mechanical ;nalog
_of the usual Boltzmann collision integral. It is shown in the
following that the remaining termss, which are first order in. the

gradient jé; , correspond to the corrections to the classical

collision integral due to Green.

The correction terms to the classical Boltzmann

8. The last two integrals in Eq. 33 are separately divergent
and must be considered together to obtain a convergent
result. They can easily be combined and written in terms
of the operator h2) by essentially reversing the
derivation given here. The form given here, however, has
the advantage that it does not involve the complicated
operator ((»,2) explicitly,
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collision integral can be written in the form
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The quantity JL is a position variable obtained as a function

of /¥ and ¢' by first transforming /¥ backward in time along
the two particle collision trajectory until the two particles no
1.onger interact and then transforming forward an equal length of
time along a straight line trajectory (i.e. ignoring the effect of
the potential). In writing the correction terms we have also used

the definitions
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where é, and %Q are the initial values of ﬁ, and éa, on the

two particle trajectory.

In exact analogy to the quantum mechanical case which we have
=/ =/
just discussed, the product 7[ f is a solution of the classical

16
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‘two particle Liouville equation to zero order in the ordering

parameter ;% . Hence

/
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where 1£y is the initial relative momentum we find that to zero

ient 2 and the derivative with respect to the
2o
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This result when substituted with Eq. 38 into Eq. 34 yields the

following correction terms:

10. A point in the phase space associated with the relative motion
of the two particles may be described by n and 4 or alternately
by &’ and .o’ . The total time derivative of an arbitrary
function defined in this phase space (i.e. the derivative
following a phase point) may be written in terms of either
of the two coordinate systems

obF _ U _ %, UL o
oaﬁ*iré p  n Qfé -

Thus Eq. 38 follows. [See D. K. Hoffman and C. F. Curtiss,
Phys. of Fluids 9, 1887 (1964)]
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In this form the classical correction terms are analogous to the
quantum mechanical correction terms given by Eq. 33.

In the classical limit

[d/gol_g & —> §o 4+ 2 ,%(é-éo)—_a}/dr/féa—ﬁ’)

If this substitution is made in Eq. 33 then Eq. 40 is obtained.
The difference between the classical and quantum mechanical forms
lies in the fact that there is no well defined quantum mechanical
trajectory and hence the quantities <Z»Iand 7é"are replaced‘by
averages in the quantum mechanical treatment;

3. The Zero Order Collision Integral

We next consider the primary term on the right of Eq. 33

18
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As has been mentioned, this term, which is of zero order in the
gradient —— , gives rise to the quantum mechanical analog of the

oy

usual Boltzmann collision integral. By Gauss' theorem one has

v 43
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The function 7C in the surface integral is evaluéted at L = D/_?,
Let us examine the integral @ /defined by Eq. 29. One sees
from Eq. 43 that it is necessary to evaluate @/ only for large

values of JT . We write ;0/41_,%;0) in terms of an incident plane

wave and a scattered wave % /iz);éo)as follows

44
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For large values of /1 we make use of a translation theorem to

show that
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To prove this theorem one writes %{/_’L?“_g%)o) in a Taylor series

expansion
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where 7[/190) is the angular amplitude of the scattered wave and
N A
cos 79'0 = éo’/_f . If one substitutes Eq. 47 into Eq. 46 and

keeps only terms of order /% one finds that
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This establishes the theorem.

From Eq. 29, 44, and 45 it follows that

20
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which can be reduced by integration over § to
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The differential cross section 6[(90) is
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To complete the evaluation of 6? we examine the final term

in this expression. TFor large values of [) R

-¢ L?)/
. D (po"f )/ A % 0[2—‘ (umm(é.//)(mﬁ)

Z (2.041) m/?"/o/g (cos b, )J

53

Since

Z (0060 P oB,) = §emBy= 1)+ Slontly #1)

0,2,




23

and
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the exponent1al can be written
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If one combines Eqs. 47 and 56 one then finds that
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Since D is large, sin (gfi/ and cos(;7 /are rapidly oscillating

functions11 and are effectively zero on integration over 7éo .
11. Since this expression has a pole at ho = O , special consideration
must be given to the integration over this point. From
Eq. 52 we see that =0 implies that = O and hence the
extra factor of in the integrand oi the integral in
Eq. 43 implies that this pole does not contribute to
the integral.
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Hence in the above equation we neglect terms proportional to

sin(32ﬁ2%7 and cos f%¢lg€7 to obtain
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The optical theorem states that

2/
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where 2} is the total cross section. Thus we write
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is established.




This result with Eq. 52 shows that
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We have previously observed that Cé is the steady state
distribution function describing a beam of particles with initial
momentum 7&0 scattered from a scattering center. This leads to

o B 2 . 3 /
a physical interpretation of the above expression for EE at a
large distance [) from the scatterer. The first term in the
/
expression for CB represents the incident beam, the second term
-2
which falls off in intensity as [) represents the scattered

beam, and the third term represents the shadow cf the scatterer.

From Eqs. 27, 43, and 61 one finds that
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The term corresponding to the incident beam in this expression
4
for the collision integral vanishes on integration over lf

The remaining S -function integrations can then be carried out

to obtain

25
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If we change variables from &o to ¢ in the first term and

introduce the expression for the total cross section

> =/O£& (®) o

into the second, we have
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This expression may be rewritten in
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where U = ;%% is the relative velocity of the two particles and
the integration is over the momentum of the second particle,

This result is identical to the classical collision integral
except that here 57&9) is the quantum mechanical differential
cross section.

It is doubtful that the corrections to the collision integral
can be reduced to a form so closely analogous to the classical
result. The reason is that the classical corrections involve the
detailed dynamics of binary collisions through the quantities ZL’
and ,11/ which, as has been mentioned, have no close correspondent
in the quantum theory. In analogy with this the quantum mechanical
corrections involve a detailed knowledge of quantum mechanical
binary collisions and probably can not be expressed in terms of
relativély simple quantities such as the phase shifts. Thus any

computation using these corrections would probably be lengthy.
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